Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT The rapid increase in the volume and variety of terrestrial biosphere observations (i.e., remote sensing data and in situ measurements) offers a unique opportunity to derive ecological insights, refine process‐based models, and improve forecasting for decision support. However, despite their potential, ecological observations have primarily been used to benchmark process‐based models, as many past and current models lack the capability to directly integrate observations and their associated uncertainties for parameterization. In contrast, data assimilation frameworks such as the CARbon DAta MOdel fraMework (CARDAMOM) and its suite of process‐based models, known as the Data Assimilation Linked Ecosystem Carbon Model (DALEC), are specifically designed for model‐data fusion. This review, motivated by a recent CARDAMOM community workshop, examines the development and applications of CARDAMOM, with an emphasis on its role in advancing ecosystem process understanding. CARDAMOM employs a Bayesian approach, using a Markov Chain Monte Carlo algorithm to enable data‐driven calibration of DALEC parameters and initial states (i.e., carbon pool sizes) through observation operators. CARDAMOM's unique ability to retrieve localized model process parameters from diverse datasets—ranging from in situ measurements to global satellite observations—makes it a highly flexible tool for analyzing spatially variable ecosystem responses to environmental change. However, assimilating these data also presents challenges, including data quality issues that propagate into model skill, as well as trade‐offs between model complexity, parameter equifinality, and predictive performance. We discuss potential solutions to these challenges, such as reducing parameter equifinality by incorporating new observations. This review also offers community recommendations for incorporating emerging datasets, integrating machine learning techniques, strengthening collaboration with remote sensing, field, and modeling communities, and expanding CARDAMOM's relevance for localized ecosystem monitoring and decision‐making. CARDAMOM enables a deep, mechanistic understanding of terrestrial ecosystem dynamics that cannot be achieved through empirical analyses of observational datasets or weakly constrained models alone.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Monitoring and estimating drought impact on plant physiological processes over large regions remains a major challenge for remote sensing and land surface modeling, with important implications for understanding plant mortality mechanisms and predicting the climate change impact on terrestrial carbon and water cycles. The Orbiting Carbon Observatory 3 (OCO‐3), with its unique diurnal observing capability, offers a new opportunity to track drought stress on plant physiology. Using radiative transfer and machine learning modeling, we derive a metric of afternoon photosynthetic depression from OCO‐3 solar‐induced chlorophyll fluorescence (SIF) as an indicator of plant physiological drought stress. This unique diurnal signal enables a spatially explicit mapping of plants' physiological response to drought. Using OCO‐3 observations, we detect a widespread increasing drought stress during the 2020 southwest US drought. Although the physiological drought stress is largely related to the vapor pressure deficit (VPD), our results suggest that plants' sensitivity to VPD increases as the drought intensifies and VPD sensitivity develops differently for shrublands and grasslands. Our findings highlight the potential of using diurnal satellite SIF observations to advance the mechanistic understanding of drought impact on terrestrial ecosystems and to improve land surface modeling.more » « less
An official website of the United States government
